HD63B09EP Technical Reference Guide By Chet Simpson Additions by Alan DeKok

INDEX

Introduction
Features1 Description of Additional
Registers
Operation3
Native Mode and Timing Loops3
Modes of the Fast Interrupt Request (FIRQ)4
Inter-Register Instructions4
Bit Manipulation of Memory Locations4
Bit Transfers Between Memory Locations and
Registers5 Block
Transfers6 New math instructions (MULD, DIVD,
DIVQ) Error
Trapping7 Additional
instructions7

UP-Code
Table10
Mnemonic
Table19
Branch
Instructions24
Bit Manipulation and
Transfers'24
Logical Memory
Instructions25
Inter-Register
Instructions25
Index Adressing Modes and Post- Byte
Information26
Register
Description27
Push/Pull
Order
Push/Pull Post-
Byte27
Condition Code
Register27
hegister
HD63B09EP Technical Reference Guide
Page 1

Introduction

The HD63B09EP microprocessor by Hitachi, is a MC68B09E compatible

chip containing additional registers and an additional instruction set.

The 6309 was thought to be a flakey chip though, because it would

sometimes crash or change the values of registers when it encountered an

addressing mode or opcode invalid to the 6809. This was later found to be

an extended instruction set and a feature that would trap some programming

errors and jump to a specified location in memory.

Hitachi licensed the rights of the 6809 instruction set from

Motorola to make a 6809 compatible chip. When they finished the design,

they found there was a lot of unused space in the chip. With this in mind

they added extra registers and expanded on the instruction set, but due to

the licensing agreement with Motorola, they were unable to release the

information about the extra features.

Not only did the chip have an expanded instruction set, but it also

had a native mode that would run many of the instructions in fewer clock

cycles and a mode select for the FIRQ (Fast Interrupt ReQuest) that would

enable it to opperate the same as the IRQ.

In fact, all new instructions will execute in emulation mode, which

was originally seen when 'illegal' 6809 instructions produced odd results

when run on a computer with a 6309 installed.

The additional instruction set was first written about in the April

1988 issue of "Oh!FM", a Japanese magazine, and was later brought to

the attention of the 6809 community by Hirotsugu Kakagawa. He followed

up a series of '6809-6309 differences' messages on comp.sys.m6809 by

posting a detailed

explanation of the new features and instructions of the 6309. This opened a whole new door to those who wished to use the 6309 in place of the 6809.

The information in this reference is of technical nature and makes no

attempt to teach assembly language programming. It is ONLY a technical

reference guide for those who already know assembly and wish to use these

features in their programs. Although all of the opcodes for the 6309/6809

chip are listed in the appendix, only the additional features supplied by

the 6309 will be discussed in detail.

More registers:

one 8/16 bit 'zero' register

Two 8bit accumulators.

One 16bit concatenated register

One 16bit value register.

One 8bit mode/error register.

One 32bit concatenated register

Two modes: MC68B09E emulation mode and HD63B09EP native mode.

Reduced execution cycles when running in native mode.

Many additional instructions.

Error trapping of illegal instructions and zero divisions.

HD63B09EP Technical Reference Guide Page 2

Description of Additional Registers

The 6309 has 7 additional registers. Only 4 of these are actual

registers. 2 are combinations of registers, and the last is a constant-value register. These registers are:

ACCE - 8 bit accumulator.

ACCF - 8 bit accumulator.

W - 16 bit concatenated register (ACCE and ACCF

combined).

Q - 32 bit concatenated register (ACCA, ACCB ,ACCE

and ACCF

combined).

V - 16 bit register (which can only be accessed

with the

inter-register instructions).

0 - zero register

MD - 8 bit mode/error register.

 $\,$ ACCE and ACCF both work in much the same manner as the ACCA and ACCB

accumulators. This makes for easier programming in math and data oriented routines.

The W register is like the D register in the 6809. It is a

concatenated register containing the values of ACCE and ACCF as one 16 bit

value. ACCE is contained in the high 8 bits and ACCF is contained in the

low 8 bits.

The Q register is a 32 bit concatenated register. This register

is composed of the concatenation of D and W, which in turn are composed of

the registers ACCA, ACCB, ACCE and ACCF respectively. This register is used

mostly with the additional math instructions supplied with the 6309 which

will be discussed later.

The V register is a 16 bit register that can only be accessed with

inter-register instructions such a TFR and EXG. The contents of this

register will not change if the CPU is reset, allowing this register to be

used as a constant value for the program.

The O register is always zero, independant of writes to it.

It enables a zero value to be used in inter-register operations without

accessing memory, or changing the value of another register.

 $\,$ The MD register is a mode and error register and works much in the

same way as the CC register. The bit definitions are as follows:

Write bits

Bit 0 - Execution mode of the 6309.

If clear (0), the cpu is in 6809

emulation mode.

If set (1), the cpu is in 6309 native

mode.

Bit 1 - FIRO mode

If clear (0), the FIRQ will occur

normally.

If set (1) , the FIRQ will operate the

same as the

IRQ

Bits 2 to 5 are unused

Read bits - One of these bits is set when the 6309 traps

an error

Bit 6 - This bit is set (1) if an illegal

instruction is

encountered

 $$\operatorname{Bit} 7$$ - This bit is set (1) if a zero division occurs.

HD63B09EP Technical Reference Guide Page 3

Modes of Operation

The 6309 has two modes of operation; 6809 Emulation mode in which

the chip acts and executes instructions the same as the 6809, and 6309

Native mode which stores an extra two bytes on the stack when an interrupt

(IRQ) occurs, and executes instructions in fewer clock cycles.

When in native mode, the W register (2 additional bytes) is stored

(PSHS) on the system stack when an interrupt occurs, it is stored on the

stack right after the D (general data) register. Since ALL register

values are stored on the system stack when an IRQ (NOT FIRQ See FIRQ

modes for more information) occurs, great care should be taken when

writing or patching those routines to run in native mode.

Pull <- CC,A,B,E*,F*,DP,Xhi,Xlo,Yhi,Ylo,Uhi,Ulo,PChi,PClo <- Push

* indicates the additional registers stored on the system stack

When in native mode those interrupt routines which modify the return

address by modifying the 10th and 11th byte offsets from the stack (STX

10,S or STY 10,S etc.) will have to be changed to modify the 12th and 13th

byte offsets from the stack (STX 12,S or STY 12,S etc.). If those routines

are not patched to run in native mode they will either get stuck in a

continuous loop or will crash the system due to the fact that they are not

returning to the correct address. This poses a MAJOR problem for OS-9

Level II since its main interrupt handling routine relies highly on the

changing of the return (PC) address on the stack. Disk read/write and

formatting routines also rely heavily on changing the return address

during an NMI (Non-Maskable Interrupt).

To patch those routines which do modify the return address, the

program or routine must be disassembled or modified with a disk sector

editing program. Look for instructions such as STX 10,S or STY 10,S that

has an RTI (Return from Interrupt) instruction within the next few lines

of the routine. The line containing STX 10,S or STY 10,S should be changed

to STX 12,S or STY 12,S respectively.

Remember, after those routines are patched, those programs using them

will NOT work in emulation mode and will require native mode to be enabled

upon startup.

Native Mode and Timing Loops

There is at least one more problem that needs to be addressed. Those

are routines which are dependant on timing loops for accuarate operation.

Since the 6309 executes instructions faster when in native mode, those

routines that use timing loops would be effected. Since this can pose a

problem and can create erratic operation, the delay value or routine will

need to be changed for the routine to operate correctly.

Those routines are usually serial-printer routines, cassette

read/write timing routines, software clocks and some disk

read/write routines.

HD63B09EP Technical Reference Guide Page 4

Modes of the Fast Interrupt Request (FIRQ)

The designers of the 6309 decided that with the additional

it usually is. With this in mind they decided to allow you to make the

FIRQ run the same as the IRQ and store (PSHS) all the current values of

the registers on the system stack. Normally, the FIRQ only stores the CC

(condition code) and the PC (Program Counter/return address) on the stack,

so to keep compatability with the 6809, they included it as a selectable

feature in the MD (Mode/status) register.

Inter-Register Instructions

The new Inter-Register instructions (ADCR, ADDR, CMPR, EORR, ORR,

SBCR, and SUBR) all work the same as their register/memory (ADCA, ADDA,

etc.) counterparts except that they operate between registers. All of the

new instructions use the same post-byte information as the normal TFR

instruction and use the format of R0,R1 (register 0 and Register 1 $\,$

respectively) with the result going into R1. See Block Transfers for

information on the TFR block move instructions.

Mixed-size inter-register operations default to using identical sized register. So TFR A,X actually executes as TFR D.X.

You could also do 'lea(d) d,pc' calculations by doing 'addr

the new inter-register instructions can now perform math using the PC

register, REALLY odd possibilities exist. Try looking at code like

'eorr d,pc', and figuring out where it ends up.

Inter-register instructions with 16-bit r1 and CC or DP (8-bit r2)

are legal, but the results are unknown.

Bit Manipulation of Memory Locations

The AIM, EIM, OIM and TIM instructions all do logical bit

manipulations to locations in memory, with the result stored into the

location, and the respective bits for each instruction set in the CC

register. They can be used in the DIRECT, INDEXED or EXTENDED adressing modes.

Instruction descriptions:

AIM - AND IN MEMORY

EIM - EOR IN MEMORY

OIM - OR IN MEMORY

TIM - TEST bits IN MEMORY

Instruction format: X, post byte, operand

 $\label{eq:where X is the instruction op-code, post-byte contains} \\ \text{the bits to} \\$

AND, OR, EOR or TEST against the memory location, and the operand is the

memory location or indexing post-byte depending on the mode of operation.

Mnemonic format:

Instruction logical operation value, memory location or index operation

Mnemonic example:

AIM #\$0F,\$E00

The example takes the contents of memory location \$E00, does a LOGICAL

and with the Value #\$0F and then stores the result back into \$E00.

Bit Transfers Between Memory Locations and Registers

The BAND, BIAND, BOR, BIOR, BEOR, BIEOR, LDBT, and STBT all do

logical operations to bits for the n-th bit in a memory location and the

m-th bit of a register. The LDBT and STBT instructions allow you to

transfer certain bits between registers and memory locations. All

instructions allow you to specify which register to use, which bit

location to use in the register, which bit location to use in the memory

location, and the memory location to use. This allows you to transfer/or

do a logical operation with the 7th bit of a register and the 3rd bit of a

memory location. All bits are accessible on either the register or memory

locations. The only limitations are that the instructions can only be used

with the A and B accumulators and the CC (condition Code) registers. It

should also be noted that these instructions can only be used in the

DIRECT addressing mode.

Instruction description:

BAND - AND a bit in a register with bit from memory location BIAND - AND a bit in a register with the complement of the bit in memory

BOR - OR a bit in a register with a bit from a memory location

BIOR - OR a bit in a register with the complement of the bit in memory

BEOR - EOR a bit in a register with a bit from a memory location

BIEOR - EOR a bit in a register with the complement of the bit in memory

LDBT - Load a bit from a memory location into a bit in a register

STBT - Store a bit from a register into a memory location.

Instruction format:

x, post-byte, memory location

Where X is the instruction op-code, the post-byte contains the

register, source and destination bit information and the memory location

is the 8 bit value of the memory location to be used (Remember only DIRECT

mode is allowed with these instructions).

Mnemonic format:

instruction, register, source bit, destination bit, memory location

Mnemonic example:

BOR A, 1, 7, \$00

The example would take the first (1) bit of register A (A) and OR it

into the 7th (7) bit of memory location \$00 (\$00) of the direct page (DP

register value)

The post-byte of these instructions are not the same as the post-byte

used in any other operation (indexed or inter-register) as all of the

information (register, source and destination bit) is contained in one

post-byte value.

HD63B09EP Technical Reference Guide Page 6

Block Transfers

Block transfers are used to move a certain number of bytes from one

place in memory to another with the use of one instruction. Two 16 bit

registers (X, Y, U or S) are used to specify the source and destination

addresses, and the size of the block to be transferred is

specified with

the W register. It should be noted that even though the IRQ and FIRQ only

occur after the current instruction is finished, block moves can be

interrupted. After the interrupt returns, the last byte read is read once

more. i.e. It is read _twice_ by the CPU This can cause problems with

memory mapped I/O devices, so caution is advised when using the block

transfers. There isn't much control over these 4 instructions so the only

thing applicable for them would be large block moves such as scrolling the

screen or clearing an area in memory with a certain value.

TFM r0+,r1 and TFM r0,r1+ can be considered a poor mans DMA channel.

Since all the data is either copied into or read from one memory location.

Four types of block transfers have been provided.

Mnemonic examples:

(R0 - source address register, R1 - destination address register.)

TFM r0+, r1+

- Transfer from R0 to R1 in incrementing order.

TFM r0-, r1-

- Transfer from R0 to R1 in decrementing order.

TFM r0+,r1

- Pour from R0 into R1, only incrementing R0 (R1 stays the same).

TFM r0.r1+

- Read from R0 into R1, only incrementing R0 (R1 stays the same).

Mnemonic example:

LDW #\$100

LDX #\$600

LDY #\$700

The example would move 256 (LDW #\$0100) bytes from #\$600 (LDX #\$0600) in

memory to #\$700 (LDY #\$0700) in memory, incrementing the value of each

register (X and Y), and decrementing the value of the W register each time $% \left(X_{i}\right) =\left(X_{i}\right) +\left(X_{i}\right)$

a byte if moved.

example) will not be the same value they were before the transfer was

initiated, but will but will be their original values PLUS the value of

the W register (#\$100 in the example). So in the example once the move is

complete, the value of X will be returned as #\$700 and the value of Y will

be returned as #\$800. The value of W register will be 0.

It is illegal to use any of the CC, DP, W, V, 0, or PC registers $\ensuremath{\mathsf{N}}$

as either a source or destination register. Note that the D register

CAN be used with the TFM instructions.

HD63B09EP Technical Reference Guide Page 7

New math commands

The $6309\ \text{has}\ 3$ additional math instructions. A $16\ \text{bit}$ by $16\ \text{bit}$

signed multiply (MULD), a 16 bit by 8 bit signed divide (DIVD) and a 32

bit by 16 bit signed divide (DIVQ). These instructions can all be used in

Immediate, direct, indexed and extended addressing modes.

The MULD (16 bit by 16 bit) instruction does a signed multiply of the

contents of the D register and a value from memory (or in direct mode).

The signed result is stored in the Q register.

The DIVD (16 bit by 8 bit) instruction does a signed divide of the

contents of the D register with a value from memory (or in direct mode).

The signed result is stored with the quotient in W and the modulo

(remainder) in D.

The DIVQ (32 bit by 16 bit) instruction does a signed divide of the

contents of the Q register with a value from memory (or in direct mode).

The signed result is stored with the quotient in W and the modulo $\,$

(remainder) in D.

Error Trapping

The 6309 has an internal error trapping handler that will jump to a

specific location in memory when either an error is encountered in the

DIVision instructions (only divide by zero) or an illegal instruction is

encountered. When an error is encountered, the 6309 will jump to the

memory location contained in \$FFF0 (and \$FFF1) which was originally

reserved by the 6809.

The trap may cause problems with machines that have \$FF00 hardcoded

with the values \$0000. A new EPROM should be burned to correct for the

new behaviour of the 6309.

As many people know, an illegal instruction trap is extremely useful

for debugging programs, as it prevents the entire machine from crashing

when a bug is encountered.

Note that many pseudo-legal instructions on the 6809 are now illegal

on the 6309, e.g. \$1020xxxx executes as an LBRA on a 6809, but results in

a trap on a 6309.

Additional Instructions

The 6309 has MANY new instructions. Most are

variations of old

instructions of the 6809 for use with the new registers. The new

instruction set can be used in both native and emulation mode. Here is a

list of the new instructions of the 6309:

ADCD

- Adds immediate or memory operand to the D register plus the current

status of the carry with the result going to D.

ADCR

- Adds two registers together plus the current status of the carry.

HD63B09EP Technical Reference Guide Page 8

ADDE , ADDF, ADDW

- Add of immediate or memory operand to E, F or W with results going

to E, F or W

ADDR

- Adds two registers together

ANDD

 Logical AND of immediate or memory operand to D register with result going to D.

ANDR

- Logical AND of a register with the contents of another register

ASLD (Same as LSLD)

- Arithmetic shift left. Shifts D one bit left, clearing LSB.

ASRD

- Arithmetic shift right of the D register with sign extending.

BITD

- Test any bit or bits of the D register.

BITMD

- Test any bit or bits of the MD (mode) register.

CLRD, CLRE, CLRF, CLRW

- Clear register D, E, F or W to zero.

CMPE, CMPF, CMPW

- Compares the contents of E, F or W with the immediate or $\ensuremath{\mathsf{memory}}$

operand. Sets all CC except H on result.

CMPR

- Compares one register to another and sets all CC bits except $\ensuremath{\mathsf{H}}$ on

result.

COMD, COME, COMF, COMW

- One's complement D ,E, F, or W. Changes all zero's to one's and $% \left(1\right) =\left(1\right) \left(1\right) \left$

all one's to zero's.

DECD, DECE, DECF, DECW

- Decrement D, E, F, or W by 1.

DIVD, DIVQ

- Does a 16 bit by 8 bit (DIVD) or a 32 bit by 16 bit (DIVQ) signed

divide with immediate or memory operand with quotient in $\ensuremath{\mathsf{W}}$ and modulo

(remainder) in D.

EORD

- Logical exclusive OR of D and immediate or memory operand.

E0RR

- Logical exclusive OR of one register with the value of another

register.

INCD, INCE, INCF, INCW

- Increment D, E, F or W by 1.

LDE, LDF, LDQ, LDW, LDMD

- Standard loading of E, F, Q, W or MD with immediate data value or

operand from memory. (LDMD only valid with IMMEDIATE mode) HD63B09EP Technical Reference Guide Page 9

LSLD (Same as ASLD)

- Logical shift left. Shifts D one bit left, clearing LSB.

LSRD, LSRW

- Logical shift right. Shifts D or W one bit right, clearing MSB.

MULD

- Performs as 16bit by 16bit signed multiply with immediate or operand

from memory. Result stored in Q.

NEGD

- Two's complement D register.

0RD

- Logical OR of register D and immediate or memory operand.

0RR

- Logical OR of one register with another.

PSHSW, PSHUW

- Stores contents of the W register on the (system or user) stack.

PULSW, PULUW

- Pull value from (system or user) stack into register W.

ROLD, ROLW

- Rotate D or W one bit left through the Carry Condition code.

RORD, RORW

- Rotate D or W one bit right through the Carry Condition code.

SBCD

- Subtract an immediate or memory operand plus any borrow in $\operatorname{\mathsf{Carry}}$ from

contents of D. Result stored in D.

SRCR

- Subtract the value of one register from another plus any borrow in

the CC carry.

SEXW

- sign exdend the W register into the D register.

STE, STF, STQ, STW

- Store register E, F, Q or W to memory location (E,F), two memory

locations(W), or four memory locations (Q).

SUBE, SUBF, SUBW

- Subtract immediate or memory operand from E, F or W.

Result stored

back in same register.

SUBR

- Subtract the value of one register from another.

TFM (Block transfer)

- Transfer W number of bytes from one location to another. Returns

 $\,$ pointer registers offset of the starting value in the W $\,$ register and

returns the W register as 0. Indexed operation only

TSTD, TSTE, TSTF, TSTW

- Test contents of D, E, F or W by setting N and X condition codes

based on data in register.

Opcode and Mnemonics Reference Table Page 10

The Opcode and Mnemonics opcode reference tables are both complete

listings that contain both the Opcode instruction and the HEX equivalant

in all available addressing modes. The first table is arranged

sequentially by the binary opcodes, while the second table is arranged

alphabetically by the Mnemonic instructions.

At the end of the second table there are data tables containing

information on Bit transfer/manipulation, branch
instructions,

inter-register instructions, and general register and stack information.

These are all helpful to the serious assembly language programmer, who

should always have one.

Opcode table

 Length	0pcode	Mnemonic	Mode	Сус	cles
	(* 6309)			6809	(6309)
1					
2	00	NEG	Direct	6	(5)
3	* 01	MIO	Direct	6	
3	* 02	AIM	Direct	6	
2	03	COM	Direct	6	(5)
2	04	LSR	Direct	6	(5)
3	* 05	EIM	Direct	6	
2	06	ROR	Direct	6	(5)
2 2	07	ASR	Direct	6	(5)
İ	08	ASL/LSL	Direct	6	(5)
2	09	R0L	Direct	6	(5)
2	0A	DEC	Direct	6	(5)
2	* 0B	TIM	Direct	6	
	0C	INC	Direct	6	(5)
2	0D	TST	Direct	6	(4)
2	0E	JMP	Direct	3	(2)
2	0F	CLR	Direct	6	(5)
2	10	(PREBYTE)			
 	11	(PREBYTE)			
	12	NOP	Inherent	2	(1)
1	13	SYNC	Inherent	2	(1)
1	* 14	SEXW	Inherent	4	
1	16	LBRA	Relative	5	(4)
3	17	LBSR	Relative	9	(7)
3					

.	19	DAA	Inherent	2 (1)
1	1A	0RCC	Immediate	3 (2)
2	1C	ANDCC	Immediate	3
2	1D	SEX	Inherent	2 (1)
1	1E	EXG	Immediate	8 (5)
2	1F	TFR	Immediate	6 (4)
2	20	BRA	Relative	3
2	21	BRN	Relative	3
2	22	BHI	Relative	3
2	23	BLS	Relative	3
2	24	BHS/BCC	Relative	3
2	25	BL0/BCS	Relative	3
2	26	BNE	Relative	3
2	27	BEQ	Relative	3
2				

Opcode and Mnemonics opcode reference table Page 11

 Length	Opcode (* 6309)	Mnemonic	Mode	Cycles	
		BVC	Relative	3	
2	29	BVS	Relative	3	
'	2A	BPL	Relative	3	

2		DMT	D 1	2
2	2B 	BMI	Relative	3
2	2C 	BGE	Relative	3
2	2D	BLT	Relative	3
2	' 2E	BGT	Relative	3
2	' 2F	BLE	Relative	3
2	 30	LEAX	Indexed	4+
	 31	LEAY	Indexed	4+
2	 32	LEAS	Indexed	4+
2	 33	LEAU	Indexed	4+
2	 34	PSHS	Immediate	5+ (4+)
2	 35	PULS	Immediate	5+ (4+)
2	 36	PSHU	Immediate	5+ (4+)
2	 37	PULU	Immediate	5+ (4+)
2	39	RTS	Inherent	5 (1)
1	3A	ABX	Inherent	3 (1)
1	, 3B	RTI	Inherent	6/15 (17)
1	 3C	CWAI	Immediate	22 (20)
2	 3D	MUL	Inherent	11 (10)
1	36 3F	SWI	Inherent	19 (21)
1	31 40			, ,
1	l [']	NEGA	Inherent	2 (1)
1	43	COMA	Inherent	2 (1)
1	44 	LSRA	Inherent	2 (1)
1	46 	RORA	Inherent	2 (1)
1	47 	ASRA	Inherent	2 (1)
1	ˈ 48 	ASLA/LSLA	Inherent	2 (1)
_	['] 49	ROLA	Inherent	2 (1)

1	I				
1	' 4A	DECA	Inherent	2	(1)
	 4C	INCA	Inherent	2	(1)
1	 4D	TSTA	Inherent	2	(1)
1	 4F	CLRA	Inherent	2	(1)
1	 50	NEGB	Inherent	2	(1)
1	 53	COMB	Inherent	2	(1)
1	 54	LSRB	Inherent	2	(1)
1	 56	RORB	Inherent	2	(1)
1	 57	ASRB	Inherent	2	(1)
1	 58	ASLB/LSLB	Inherent	2	(1)
1	 59	ROLB	Inherent	2	(1)
1	 5A	DECB	Inherent	2	(1)
1	 5C	INCB	Inherent	2	(1)
1	 5D	TSTB	Inherent	2	(1)
1	 5F	CLRB	Inherent	2	(1)
1	 60	NEG	Indexed	6+	
2+	 * 61	OIM	Indexed	6+	
3+	* 62	AIM	Indexed	7	
3+	63	СОМ	Indexed	6+	
2+	 64	LSR	Indexed	6+	
2+	* 65	EIM	Indexed	7+	
3+	 	ROR	Indexed	6+	
2+	67	ASR	Indexed	6+	
2+	67 68	ASL/LSL	Indexed	6+	
2+	68 69	ROL	Indexed	6+	
2+	09	NUL	THUCKEN	υŦ	

Opcode and Mnemonics opcode reference table Page 12

	1			
 Length 	Opcode (* 6309)	Mnemonic	Mode	Cycles
 	6A * 6B 6C 6D 6E 6F 70 * 71 * 72 73 74 76 76	DEC TIM INC TST JMP CLR NEG OIM AIM COM LSR ROR EIM	Indexed Indexed Indexed Indexed Indexed Indexed Indexed Extended Extended Extended Extended Extended Extended Extended Extended Extended	7+ 6+ 6+ 6+ 6+ 6+ 6+ 6+ 7 6+ 7 6+ 7 6 7 7 7 7
3 3 3	77 78 79 7A	ASR ASL/LSL ROL DEC	Extended Extended Extended Extended	7 (6) 7 (6) 7 (6) 7 (6)
3	l			

4	*	⁵ 7B	TIM	Extended	7	
	<u> </u>	7C	INC	Extended	7	(6)
3	<u> </u>	7D	TST	Extended	7	(5)
3	<u> </u>	7E	JMP	Extended	4	(3)
3		7F	CLR	Extended	7	(6)
3		80	SUBA	Immediate	2	
2		81	CMPA	Immediate	2	
2		82	SBCA	Immediate	2	
2	-	83	SUBD	Immediate	4	(3)
3		84	ANDA	Immediate	2	
2	 	85	BITA	Immediate	2	
2	<u> </u>	86	LDA	Immediate	2	
2	<u> </u>	88	EORA	Immediate	2	
2	 	89	ADCA	Immediate	2	
2	<u> </u>	8A	ORA	Immediate	2	
2	 	8B	ADDA	Immediate	2	
2	 	8C	CMPX	Immediate	4	(3)
3	 	8D	BSR	Relative	7	(6)
2	 	8E	LDX	Immediate	3	
3	 	90	SUBA	Direct	4	(3)
2	 	91	CMPA	Direct	4	(3)
2	 	92	SBCA	Direct	4	(3)
2	 - -	93	SUBD	Direct	6	(4)
2	 - -	94	ANDA	Direct	4	(3)
2	 - -	95	BITA	Direct	4	(3)
2	 -	96	LDA	Direct	4	(3)
2						

2	97	STA	Direct	4 (3)
2	98	EORA	Direct	4 (3)
2	99	ADCA	Direct	4 (3)
2	 9A	0RA	Direct	4 (3)
2	 9B	ADDA	Direct	4 (3)
2	9C	CMPX	Direct	6 (4)
2	 9D	JSR	Direct	7 (6)
2	 9E	LDX	Direct	5 (4)
2	 9F	STX	Direct	5 (4)
2	A0	SUBA	Indexed	4+
2+	 A1	CMPA	Indexed	4+
2+				

Opcode and Mnemonics opcode reference table Page 13

 Length	Opcode (* 6309)	Mnemonic	Mode	Cycles
2+	 A2	SBCA	Indexed	4+
2+	 A3	SUBD	Indexed	6+ (5+)
	 A4	ANDA	Indexed	4+
2+	 A5	BITA	Indexed	4+
2+	 A6	LDA	Indexed	4+
2+	 A7	STA	Indexed	4+

2+	I			
	 A8	EORA	Indexed	4+
2+	 A9	ADCA	Indexed	4+
2+	 AA	ORA	Indexed	4+
2+	 AB	ADDA	Indexed	4+
2+	 AC	CMPX	Indexed	6+ (5+)
2+	 AD	JSR	Indexed	7+ (6+)
2+	 AE	LDX	Indexed	5+
2+	 AF	STX	Indexed	5+
2+	В0	SUBA	Extended	5 (4)
3	 B1	CMPA	Extended	5 (4)
3	B2	SBCA	Extended	5 (4)
3	B2 B3	SUBD	Extended	7 (5)
3	,			
3	B4 	ANDA	Extended	5 (4)
3	B5 	BITA	Extended	5 (4)
3	B6 	LDA	Extended	5 (4)
3	B7 	STA	Extended	5 (4)
3	B8 	EORA	Extended	5 (4)
3	' B9 I	ADCA	Extended	5 (4)
3	 BA	ORA	Extended	5 (4)
3	I BB	ADDA	Extended	5 (4)
	l BC	CMPX	Extended	7 (5)
3	l BD	JSR	Extended	8 (7)
3	 _ BE	LDX	Extended	6 (5)
3	 BF	STX	Extended	6 (5)
3	 C0	SUBB	Immediate	2
2	 C1	CMPB	Immediate	2

2	1					
	C2	2	SBCB	Immediate	2	
2	C3	3	ADDD	Immediate	4	(3)
3	 C4	1	ANDB	Immediate	2	
2	 C5	5	BITB	Immediate	2	
2	 C6	5	LDB	Immediate	2	
2	 C8	3	EORB	Immediate	2	
2	C9)	ADCB	Immediate	2	
2	CA	4	0RB	Immediate	2	
2	l CE	3	ADDB	Immediate	2	
2	 C0		LDD	Immediate	3	
3	 * CE		LDQ	Immediate	5	
5	CE		LDU	Immediate	3	
3	<u> </u>					(2)
2	D6		SUBB	Direct	4	(3)
2	D1	L	CMPB	Direct	4	(3)
2	` D2 	2	SBCB	Direct	4	(3)
2	 D3	3	ADDD	Direct	6	(4)
	D4	1	ANDB	Direct	4	(3)
2	 D5	5	BITB	Direct	4	(3)
2	 D6	5	LDB	Direct	4	(3)
2	 D7	7	STB	Direct	4	(3)
2	D8	3	EORB	Direct	4	(3)
2	 D9		ADCB	Direct	4	(3)
2		•	. 10 00	21.000	•	(3)

Opcode and Mnemonics opcode reference table Page 14

	<u> </u>			
1	Opcode	Mnemonic	Mode	Cycles
Length	 (* 6309)			
	DA	ORB	Direct	4 (3)
2	DB	ADDB	Direct	4 (3)
2	DC	LDD	Direct	5 (4)
2	DD	STD	Direct	5 (4)
2	DE	LDU	Direct	5 (4)
2	DF	STU	Direct	5 (4)
2	E0	SUBB	Indexed	4+
2+	E1	СМРВ	Indexed	4+
2+	E2	SBCB	Indexed	4+
2+	E3	ADDD	Indexed	6+ (5+)
2+	E4	ANDB	Indexed	4+
2+	E5	BITB	Indexed	4+
2+	E6	LDB	Indexed	4+
2+	E7	STB	Indexed	4+
2+	E8	E0RB	Indexed	4+
2+	E9	ADCB	Indexed	4+
2+	EA	0RB	Indexed	4+
2+	EB	ADDB	Indexed	4+
2+	EC	LDD	Indexed	5+
2+	ED	STD	Indexed	5+
2+	EE	LDU	Indexed	5+

2+							
2+	 	EF	STU	Indexed	5+		
3	 	F0	SUBB	Extended	5	(4	ļ)
		F1	CMPB	Extended	5	(4	ļ)
3		F2	SBCB	Extended	5	(4	ļ)
3	 	F3	ADDD	Extended	7	(5	5)
3	 - 	F4	ANDB	Extended	5	(4	1)
3	 	F5	BITB	Extended	5	(4	1)
3	 	F6	LDB	Extended	5	(4	1)
3	 	F7	STB	Extended	5	(4	1)
3		F8	EORB	Extended	5	(4	1)
3	 	F9	ADCB	Extended	5	(4	1)
3	 	FA	ORB	Extended	5	(4	
3	 	FB	ADDB	Extended	5	(
3		FC	LDD	Extended	6	(5	
3		FD	STD	Extended	6	(5	
3		FE	LDU	Extended	6		
3		FF		Extended			
3	 		STU		6	(5	
4	 	1021	LBRN	Reletive	5/6		
4	 -	1022	LBHI	Reletive	5/6		
4	 	1023	LBLS	Reletive	5/6		
4	 	1024	LBHS/LBCC	Reletive	5/6	()
4	 	1025	LBCS/LBL0	Reletive	5/6	()
4		1026	LBNE	Reletive	5/6	()
4	 	1027	LBEQ	Reletive	5/6	()
4	 	1028	LBVC	Reletive	5/6	()
7		1029	LBVS	Reletive	5/6	()

4				
4	 102A	LBPL	Reletive	5/6 ()
-	 102B	LBMI	Reletive	5/6 ()
4	 102C	LBGE	Reletive	5/6 ()
4	 102D	LBLT	Reletive	5/6 ()
4	 102E	LBGT	Reletive	5/6 ()
4	 102F	LBLE	Reletive	5/6 ()
4	 * 1030	ADDR	Register	4
3				

Opcode and Mnemonics opcode reference table Page 15

Length	Opcode (* 6309)	Mnemonic	Mode	Cycles
]	* 1031	ADCR	Register	4
3	* 1032	SUBR	Register	4
3	* 1033	SBCR	Register	4
3	* 1034	ANDR	Register	4
3	* 1035	ORR	Register	4
3	 * 1036	EORR	Register	4
3	* 1037	CMPR	Register	4
2	* 1038	PSHSW	Register	6
2	 * 1039 	PULSW	Register	6

2	ı	*	103A	PSHUW	Register	6	
	1	*	103B	PULUW	Register	6	
2			103F	SWI2	Inherent	20	(22)
2	 	*	1040	NEGD	Inherent	3	(2)
2		*	1043	COMD	Inherent	3	(2)
2		*	1044	LSRD	Inherent	3	(2)
2		*	1046	RORD	Inherent	3	(2)
2		*	1047	ASRD	Inherent	3	(2)
2		*	1048	ASLD/LSLD	Inherent	3	(2)
2	١	*	1049	ROLD	Inherent	3	(2)
2		*	104A	DECD	Inherent	3	(2)
2		*	104C	INCD	Inherent	3	(2)
2		*	104D	TSTD	Inherent	3	(2)
2		*	104F	CLRD	Inherent	3	(2)
2		· *	1053	COMW	Inherent	3	(2)
2		· *	1054	LSRW	Inherent	3	(2)
2	 ?	' *	1056	RORW	Inherent	3	(2)
2	-	' *	1059	ROLW	Inherent	3	(2)
2	-	' *	105A	DECW	Inherent	3	(2)
2		' *	105C	INCW	Inherent	3	(2)
2	- 1	' *	105D	TSTW	Inherent	3	(2)
2		 *	105F	CLRW	Inherent	3	(2)
2	- 1	 *					
4	١	*	1080	SUBW	Immediate	5	(4)
4	I	ı	1081	CMPW	Immediate	5	(4)
4	I	*	1082	SBCD	Immediate	5	(4)
4	I	I	1083	CMPD	Immediate	5	(4)

4	* 1	084	ANDD	Immediate	5	(4)
	 * 1	085	BITD	Immediate	5	(4)
4	 * 1	086	LDW	Immediate	5	(4)
4	 _ * 1	088	EORD	Immediate	5	(4)
4	 * 1	089	ADCD	Immediate	5	(4)
4	 _ * 1	08A	ORD	Immediate	5	(4)
4	 _ * 1	08B	ADDW	Immediate	5	(4)
4	 1	08C	CMPY	Immediate	5	(4)
4	 1	08E	LDY	Immediate	5	(4)
4	 * 1	090	SUBW	Direct	7	(5)
3	 * 1	091	CMPW	Direct	7	(5)
3	 * 1	092	SBCD	Direct	7	(5)
3	 1	093	CMPD	Direct	7	(5)
3	 * 1	094	ANDD	Direct	7	(5)
3	 * 1	095	BITD	Direct	7	(5)
3	 * 1	096	LDW	Direct	6	(5)
3	 * 1	097	STW	Direct	6	(5)
3	 * 1	098	EORD	Direct	7	(5)
3	ا	099	ADCD	Direct	7	(5)
3		-			-	(-)

Opcode and Mnemonics opcode reference table Page 16

| | | Opcode Mnemonic Mode Cycles

```
Length
       (* 6309)
         * 109A
                       0RD
                                  Direct
                                                  7 (5)
3
         * 109B
                       ADDW
                                  Direct
                                                  7 (5)
3
                       CMPY
           109C
                                  Direct
                                                  7 (5)
3
           109E
                       LDY
                                  Direct
                                                  6 (5)
3
           109F
                       STY
                                  Direct
                                                  6 (5)
3
          * 10A0
                                                  7+ (6+)
                       SUBW
                                  Indexed
3+
                                  Indexed
                                                  7+ (6+)
          * 10A1
                       CMPW
3+
          * 10A2
                                                  7+ (6+)
                       SBCD
                                  Indexed
3+
           10A3
                       CMPD
                                  Indexed
                                                  7+ (6+)
3+
          * 10A4
                       ANDD
                                  Indexed
                                                  7+ (6+)
3+
          * 10A5
                       BITD
                                  Indexed
                                                  7+ (6+)
3+
          * 10A6
                       LDW
                                  Indexed
                                                  6+
3+
         * 10A7
                       STW
                                  Indexed
                                                  6+
3+
          * 10A8
                       EORD
                                  Indexed
                                                  7+ (6+)
3+
          * 10A9
                       ADCD
                                  Indexed
                                                  7+ (6+)
3+
          * 10AA
                       ORD
                                  Indexed
                                                  7+ (6+)
3+
          * 10AB
                       ADDW
                                  Indexed
                                                  7+ (6+)
3+
           10AC
                       CMPY
                                  Indexed
                                                  7+ (6+)
3+
           10AE
                       LDY
                                  Indexed
                                                  6
3+
           10AF
                       STY
                                  Indexed
                                                  6
3+
         * 10B0
                       SUBW
                                  Extended
                                                  8
                                                     (6)
4
                                  Extended
                                                    (6)
          * 10B1
                       CMPW
                                                  8
4
          * 10B2
                       SBCD
                                  Extended
                                                     (6)
                                                  8
4
           10B3
                       CMPD
                                  Extended
                                                     (6)
                                                  8
```

4	1				
	 * 10B4	ANDD	Extended	8	(6)
4	 * 10B5	BITD	Extended	8	(6)
4	 * 10B6	LDW	Extended	7	(6)
4	 * 10B7	STW	Extended	7	(6)
4	 * 10B8	EORD	Extended	8	(6)
4	 * 10B9	ADCD	Extended	8	(6)
4	 * 10BA	ORD	Extended	8	(6)
4	* 10BB	ADDW	Extended	8	(6)
4	 10BC	CMPY	Extended	8	(6)
4	 10BE	LDY	Extended	7	(6)
4	 10BF	STY	Extended	7	(6)
4	 10CE	LDS	Immediate	4	,
4	 * 10DC	LDQ	Direct	8	(7)
3	* 10DD	STQ	Direct	8	(7)
3	10DB 10DE	LDS	Direct	6	(5)
3	10DE 10DF	STS	Direct	6	
3	<u> </u>			8+	(5)
3+	1000	LDQ CTO	Indexed		
3+		STQ	Indexed	8+	
3+	10EE 	LDS	Indexed	6+	
3+	10EF 	STS	Indexed	6+	
4	* 10DC 	LDQ	Extended	9	(8)
4	* 10DD 	STQ	Extended	9	(8)
4	10FE 	LDS	Extended	7	(6)
4	 10FF 	STS	Extended	7	(6)
4	 * 1130	BAND	Memory	7	(6)
·	* 1131	BIAND	Memory	7	(6)

4	<u> </u>	* 1132	BOR	Memory	7	(6)
4		* 1133	BIOR	Memory	7	(6)
4		* 1134	BEOR	Memory	7	(6)
4		* 1135	BIEOR	Memory	7	(6)
4	I					

Opcode and Mnemonics opcode reference table Page 17

 	Opcode (* 6309)	Mnemonic	Mode	Cycles
4 4 3 3 3 3 5 2 2	* 1136 * 1137 * 1138 * 1139 * 113A * 113B * 113C * 113D 113F * 1143	LDBT STBT TFM R+,R+ TFM R-,R- TFM R,R+ BITMD LDMD SWI2 COME DECE	Memory Register Register Register Register Immediate Immediate Inherent Inherent Inherent	7 (6) 8 (7) 6+3n 6+3n 6+3n 6+3n 4 5 20 () 3 (2) 3 (2)
2	 * 114C 	INCE	Inherent	3 (2)

2	* 114D	TSTE	Inherent	3 (2)
2	 * 114F	CLRE	Inherent	3 (2)
	* 1153	COMF	Inherent	3 (2)
2	 * 115A	DECF	Inherent	3 (2)
2	 * 115C	INCF	Inherent	3 (2)
2	 * 115D	TSTF	Inherent	3 (2)
2	 * 115F	CLRF	Inherent	3 (2)
2	 11AC	CMPS	Indexed	7 ()
3	 * 1180	SUBE	Immediate	3
3	 * 1181	CMPE	Immediate	3
3	 _ 1183	CMPU	Immediate	5 (4)
4	 * 1186	LDE	Immediate	3
3	 * 118B	ADDE	Immediate	3
3	 118C	CMPS	Immediate	5 (4)
4	 * 118D	DIVD	Immediate	25
4	 * 118E	DIVQ	Immediate	36
4	 * 118F	MULD	Immediate	28
4	 * 1190	SUBE	Direct	5 (4)
3	 * 1191	CMPE	Direct	5 (4)
3	 1193	CMPU	Direct	7 (5)
3	 * 1196	LDE	Direct	5 (4)
3	 * 1197	STE	Direct	5 (4)
3	* 119B	ADDE	Direct	5 (4)
3	 119C	CMPS	Direct	7 (5)
3	 * 119D	DIVD	Direct	27 (26)
3	 * 119E	DIVQ	Direct	36 (35)
3	l [']	•		\ <i>,</i>

3	;	* 119F	MULD	Direct	30 (29)
		* 11A0	SUBE	Indexed	5+
3+	 _	* 11A1	CMPE	Indexed	5+
3+	<u> </u>	11A3	CMPU	Indexed	7+ (6+)
3+	 	* 11A6	LDE	Indexed	5+
3+	 	* 11A7	STE	Indexed	5+
3+	 	* 11AB	ADDE	Indexed	5+
3+	<u> </u>	11AC	CMPS	Indexed	7+ (6+)
3+	 _	* 11AD	DIVD	Indexed	27+
3+	 _	* 11AE	DIVQ	Indexed	36+
3+	.	* 11AF	MULD	Indexed	30+
3+		* 11B0	SUBE	Extended	6 (5)
4					

Opcode and Mnemonics opcode reference table Page 18

 Length 	Opcode (* 6309)	Mnemonic	Mode	Cycles	
	 * 11B1	CMPE	Extended	6 (5)	-
4	 11B3	CMPU	Extended	8 (6)	
4	 * 11B6	LDE	Extended	6 (5)	
4	 * 11B7 	STE	Extended	6 (5)	
7	 * 11BB	ADDE	Extended	6 (5)	

1	1			
4	 11BC	CMPS	Extended	8 (6)
4	 * 11BD	DIVD	Extended	28 (27)
4	 * 11BE	DIVQ	Extended	37 (36)
4	 * 11BF	MULD	Extended	31 (30)
4	 * 11C0	SUBF	Immediate	3
3	 * 11C1	CMPF	Immediate	3
3	 * 11C6	LDF	Immediate	3
3	 * 11CB	ADDF	Immediate	3
3	 * 11D0	SUBF	Direct	5 (4)
3	 * 11D1	CMPF	Direct	5 (4)
3	 * 11D6	LDF	Direct	5 (4)
3	 * 11D7	STF	Direct	5 (4)
3	 * 11DB	ADDF	Direct	5 (4)
3+	 * 11E0	SUBF	Indexed	5+
	 * 11E1	CMPF	Indexed	5+
3+ 3+	 * 11E6	LDF	Indexed	5+
3+	 * 11E7 	STF	Indexed	5+
3+	 * 11EB	ADDF	Indexed	5+
4	 * 11F0	SUBF	Extended	6 (5)
4	 * 11F1 	CMPF	Extended	6 (5)
	 * 11F6	LDF	Extended	6 (5)
4	 * 11F7	STF	Extended	6 (5)
4	 * 11FB	ADDF	Extended	6 (5)
4	I			

OP	 Mnem erent	I	mmed.		D	irect		l]	Indexed	l b	Ex	tende	d
AA 3/1 1 ADCA 89 2 2 99 4/3 2 A9 4+ 2+ B9 5/4 3 ADCB C9 2 2 D9 4/3 2 E9 4+ 2+ F9 5/3 3 ADCD 10 5/4 4 10 7/5 3 10 7+/6+ 3+ 10 8/6 4 ADCD 89 99 A9 B9 B9 ADDA 8B 2 2 BB 4/3 2 BB 4+ 2+ FB 5/4 3 ADDD C3 4/3 3 D3 6/4 2 E3 6+/5+ 2+ F3 7/5 3 ADDE 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 ADDF 11 3 3 11 5/4 3 11 5/		0P	~/~	#	 OP	~/~	+		0P	~/~	#	0P	~/~	#
AA 3/1 1 ADCA 89 2 2 99 4/3 2 A9 4+ 2+ B9 5/4 3 ADCB C9 2 2 D9 4/3 2 E9 4+ 2+ F9 5/3 3 *ADCD 10 5/4 4 10 7/5 3 10 7+/6+ 3+ 10 8/6 4 ADCB 89 99 A9 B9 B9 ADDA 8B 2 2 BB 4/3 2 AB 4+ 2+ BB 5/4 3 ADDB CB 2 2 DB 4/3 2 EB 4+ 2+ FB 5/4 3 ADDD C3 4/3 3 D3 6/4 2 E3 6+/5+ 2+ F3 7/5 3 *ADDE 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB *ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB *ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB *ADDF 10 5/4 4 10 7/5 3 EB FB FB *ADDW 10 5/4 4 10 7/5 3 10 7+/6+ 3+ 10 8/6 4 ADDW 10 5/	+	 -			+			+ -			+			
ADCA											I			l
*ADCD 10 5/4 4 10 7/5 3 10 7+/6+ 3+ 10 8/6 4 89 99 A9 B9 B9 ADDA 8B 2 2 BB 4/3 2 AB 4+ 2+ BB 5/4 3 ADDB CB 2 2 DB 4/3 2 EB 4+ 2+ FB 5/4 3 ADDD C3 4/3 3 D3 6/4 2 E3 6+/5+ 2+ F3 7/5 3 ADDE 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5/4 3 11 5+ 3+ 11 6/5 4 BB ADDF 11 3 3 11 5/4 3 11 5/4 3 11 5/4 3 11 5/4 3 11 6/5 4 ADDF 11 3 3 3 11 5/4 3 11 5/4 3 11 5/4 3 11 5/4 3 11 6/5 4 ADDF 11 3 3 3 11 5/4 3 11 5/4 3 11 5/4 3 11 6/5 4 ADDW 10 5/4 4 10 7/5 3 10 7/6+ 3+ 10 8/6 4 ADDW 10 7/6 4 ADDW 10 7	•	89	2	2	99	4/3	2		Α9	4+	2+	В9	5/4	3
	ADCB	С9	2	2	D9	4/3	2		E9	4+	2+	F9	5/3	3
ADDA	*ADCD	10	5/4	4	10	7/5	3	l	10	7+/6+	3+	10	8/6	4
ADDB	I	89			99			l	Α9		I	В9		١
ADDB	+	 -			+			+-			+			
ADDD	ADDA	8B	2	2	9B	4/3	2		AB	4+	2+	BB	5/4	3
*ADDE	ADDB	СВ	2	2	DB	4/3	2		EB	4+	2+	FB	5/4	3
8B	ADDD	С3	4/3	3	D3	6/4	2	l	E3	6+/5+	2+	F3	7/5	3
*ADDF	*ADDE	11	3	3	11	5/4	3		11	5+	3+	11	6/5	4
CB	1	8B			9B				AB		1	ВВ		
*ADDW 10 5/4 4 10 7/5 3 10 7+/6+ 3+ 10 8/6	*ADDF	11	3	3	11	5/4	3		11	5+	3+	11	6/5	4
	1	СВ			DB				ЕВ		I	FB		
8B 9B AB BB	*ADDW	10	5/4	4	10	7/5	3	l	10	7+/6+	3+	10	8/6	4
	I	8B			9B				AB		I	ВВ		
•	+				+			+-			+			
 *AIM	*AIM	-			02	6	3		62	7+	3+	72	7	4

```
2 2 | 94 4/3 2 | A4 4+ 2 | B4 5/4 3 |
  | ANDA
        | 84
  | ANDB
         | C4
               2
                  2 | D4
                         4/3 2 | E4
                                    4+ 2 | F4
                                                5/4 3 I
               3
 | ANDCC
        | 10
                  2 |
  |*ANDD
         | 10
              5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 |
        | 84
                  | 94
                         | ASLA
48 2/1 1
 | ASLB
58 2/1 1
|*ASLD
10 3/2 2
48
| ASL
                    | 08 6/5 2 | 68 6+ 2+ 78 7/6 3 |
+----|
| ASRA
47 2/1 1 |
 | ASRB
57 2/1 1
|*ASRD
10 3/2 1
47
 | ASR
                   | 07 6/6 2 | 67 6+ 2+| 77 7/6 3 |
               2
                  2 | 95
                         4/3 2 | A5 4+ 2+| B5
                                                5/4 3 |
 | BITA
        | 85
         | C5
               2
                  2 | D5
                         4/3
                             2 | E5 4+ 2+ | F5
                                                5/4 3 |
 | BITB
 | BITD
         | 10
              5/4 4 | 10
                         7/5 3 | 10 7+/6+ 3+| 10 8/6 4 |
         | 85
                  | 95
                               | A5
                                          1 B5
  | BITMD
        | 11
              4
                  3 |
         | 3C
 | CLRA |
```

4F 2/1 1						
CLRB						
5F 2/1 1						
*CLRD						
10 3/2 2		_				
	<u> </u>					
4F	ļ					
*CLRE						
11 3/2 2	<u> </u>					
45	<u> </u>	l		I		ı
4F						
*CLRF		l	l	I		- 1
11 3/2 2						
-		l	I	I		ı
5F		ı	1			
*CLRW	 	l	I	1		- 1
10 3/2 2	 	I	1			1
5F	 	l	I	I		ı
CLR	! !	0F 6/5	2 6F	6+ 2+1	7F 7/6	3 I
l CLIV	I	01 0/3	2 01	0∓ Z∓	/1 //0	ا د
I						

Mnem Inherent	I	mmed.		D	irect			Indexe	d	Ex	tende	d
	OΡ	~/~	#	 0P	~/~	+ 1	ΩP	~/~	#	ΩP	~/~	 #
0P ~/~ # +			,	•		•			•			
CMPA	- 81	2	2	91	4/3	2	Α1	4+	2+	В1	5/4	3
CMPB	C1	2	2	D1	4/3	2	E1	4+	2+	F1	5/4	3
CMPD	10	5/4	4	10	7/5	3	10	7+/6+	3+	10	8/6	4
¦	83			93			А3		- 1	В3		1
 *CMPE	11	3	3	11	5/4	3	11	5+	3+	11	6/5	4
<u> </u>	81			91		- 1	A1		1	В1		

```
3 3 | 11 5/4 3 | 11 5+ 3+| 11 6/5 4 |
 |*CMPF
       | 11
        | C1
           | D1
                     | CMPS
            5/4 4 | 11 7/5 3 | 11 7+/6+ 3+| 11 8/6 4 |
        | 11
        | 8C
            | 9C
                     | CMPU
            5/4 4 | 11
                     7/5 3 | 11 7+/6+ 3+| 11
        | 11
                                        8/6 4 |
        | 83
               | 93
                     | A3 | B3
 | *CMPW
                     7/5 3 | 10 7+/6+ 3+| 10 8/6 4 |
        | 10
            5/4 4 | 10
        | 81
            | 91
                     4/3 3 | 9C 6/4 2 | AC 6+/5+ 2+| BC 7/5 3 |
 | CMPX
        | 8C
 | CMPY
       | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 |
           | 9C
        | 8C
                     | COMA
43 2/1 1
| COMB
53 2/1 1
|*COMD
10 3/2 2
43
|*COME
11 3/2 2
43
|*COMF
11 3/2 2
53
|*COMW
10 3/2 2
53
| COM
                 | 03 6/5 2 | 63 6+ 2+ 73 7/6 3 |
 | CWAI | 3C 22/20 2 |
+----|
```

19	DAA 2/1	1											I				
+	 	 	 			+-				+			+				
4A	DECA 2/1 DECB	1	ı			 							-				
5A	2/1	1															
	*DECD 3/2																
4A						ı				ı			I				ı
	*DECE 3/2	2															
4A						ı				ı			ı				ı
	*DECF 3/2																
5A						ı				ı			ı				l
	*DECW 3/2												- 1				
		_											-				
5A	DEC						0A	6/5	2		6A	6+	2+	7A	7/6	3	
	Ī									_							
		+				+-				- +			+ -				
+	 *DIVD	- 	 11	25	3	+-	11	27/26	3	- + · 	11	27+	3+	11	28/27	4	ı
+	 *DIVD	- 		25	3			27/26	3			27+	3+		28/27	4	
 		- 	8D			1	9D				AD		1	BD			1
 	 *DIVD *DIVQ		8D			1	9D				AD		1	BD			1
 			8D	34	4	 	9D 11	36/35	3	1	AD 11		3+	BD 11			1
 		I	8D 11 8E	34	4	 	9D 11 9E	36/35	3	 	AD 11 AE	36+	3+ 	BD 11			1
 	 *DIVQ	 +	8D 11 8E	34	4		9D 11 9E	36/35	3		AD 11 AE	36+	3+	BD 11 BE	37/36	4	
 	 *DIVQ *EIM	 + 	8D 11 8E	34	4		9D 11 9E 	36/35 6	3		AD 11 AE 65	36+	3+ + 	BD 11 BE 	37/36 7	4	
 	 *DIVQ *EIM	 	8D 11 8E	34	4		9D 11 9E 	36/35 6	3		AD 11 AE 65	36+ 7+	3+ 	BD 11 BE 	37/36 7	4 4	
 	 *DIVQ *EIM EORA	 	8D 11 8E 88	34	2	+	9D 11 9E 05 	36/35 6 4/3	3 3 2	 -+	AD 11 AE 65 A8	36+ 7+ 4+	3+ + 	BD 11 BE 75 B8	37/36 7 5/4	4 4 3	
 	 *DIVQ *EIM EORA EORB	 	8D 11 8E 88 C8	34 2 2	4 2 #		9D 11 9E 05 98 D8	36/35 6 4/3 4/3	3 3 2 2	 +	AD 11 AE 65 A8 E8	36+ 7+ 4+ 4+	3+ + 	BD 11 BE 75 B8 F8	37/36 7 5/4 5/4	4 4 3 3	
 	 *DIVQ *EIM EORA	 	8D 11 8E 88 C8	34 2 2	4 2 #		9D 11 9E 05 98 D8	36/35 6 4/3 4/3	3 3 2 2	 +	AD 11 AE 65 A8 E8	36+ 7+ 4+ 4+	3+ + 	BD 11 BE 75 B8 F8	37/36 7 5/4 5/4	4 4 3 3	
 	 *DIVQ *EIM EORA EORB	 	8D 11 8E 88 C8	34 2 2	4 2 #		9D 11 9E 05 98 D8	36/35 6 4/3 4/3 7/5	3 3 2 2 3		AD 11 AE 65 A8 E8	36+ 7+ 4+ 4+	3+ + 	BD 11 BE 75 B8 F8	37/36 7 5/4 5/4	4 4 3 3	

- - - - - -

Mnem Inherent	Immed.	D	irect			Indexe		Ex	tende	d
 0P ~/~ #	 0P ~/~ # 	 0P	~/~	+	 OP	~/~	#	0P	~/~	#
+	 1E 8/5 2	† 			†· 		+ 			
+	 	+ 			† 		+ 			
*INCD 10 3/2 2 4C		 			 -		 			
*INCE 11 3/2 2 4C		1 1			1 1		 			
*INCF 11 3/2 2 5C		 			 		 			
*INCW 10 3/2 2 		 			 		 			
1	 									-
+						3+				•
+		9D	7/6	2	AD	7+/6+	2+	BD	8/7	3

```
2 | 96
| LDA
                 2
                               4/3
                                    2 | A6
                                                   2+| B6
                                                            5/4 3 |
          | 86
                                               4+
| LDB
          I C6
                 2
                      2 | D6
                               4/3
                                     2 | E6
                                                   2+| F6
                                                            5/4
                                                                  3 |
                                               4+
                                    2 | EC
          | CC
                 3
                      3 | DC
                               5/4
                                                   2+| FC
| LDD
                                               5+
                                                            6/5
                                                                  3 |
|*LDE
          | 11
                 3
                      3 | 11
                               5/4
                                     3 | 11
                                               5+
                                                   3+| 11
                                                            6/5
                                                                  4 |
                                                    | B6
          | 86
                        | 96
                                     | A6
|*LDF
          | 11
                 3
                      3 | 11
                               5/4
                                    3 | 11
                                               5+
                                                   3+| 11
                                                            6/5
          | C6
                        | D6
                                     | E6
                                                    | F6
|*LDQ
          | CD
                 5
                      5 | 10
                               8/7
                                     3 | 10
                                               8+
                                                   3+| 10
                                                            9/8
                       | DC
                                     | EC
                                                    | FC
                               6/5
| LDS
          | 10
                 4
                      4 | 10
                                     3 | 10
                                               6+
                                                   3+| 10
                                                            7/6
          | CE
                                     | EE
                                                    | FE
                        | DE
                      3 | DE
                               5/4
                                     2 | EE
| LDU
          | CE
                 3
                                               5+
                                                   2+| FE
                                                            6/5
                                                                  3 |
|*LDW
          | 10
                 4
                      4 | 10
                               6/5
                                     3 | 10
                                               6+
                                                   3+| 10
                                                            7/6
                                                                  4 |
          | 86
                        | 96
                                       | A6
                                                      | B6
| LDX
          | 8E
                 3
                      3 | 9E
                               5/4
                                     2 | AE
                                               5+
                                                   2+| BE
                                                            6/5
                                                                  3 |
                      4 | 10
                                     3 | 10
                                                   3+| 10
| LDY
          | 10
                 4
                               6/5
                                               6+
                                                            7/6
                                                                  4 |
          | 8E
                        | 9E
                                       | AE
                                                        BE
|*LDMD
            11
                 5
                      3 |
          | 3D
| LEAS
                                       | 32
                                               4+
                                                   2+|
| LEAU
                                       | 33
                                               4+
                                                   2+|
| LEAX
                                         30
                                               4+
                                                   2+|
| LEAY
                                       | 31
                                               4+
                                                   2+|
| LSLA/LSLB/LSLD/LSL - Same as ASL
```

Mnemonics Reference Table Page 22

 Mnem Inherent	Immed.	Direct	Indexed	Extended
		l	1	1
	OD / #	I OD / .	1 00 / #	1 00 / # 1
	UP ~/~ #	UP ~/~ +	UP ~/~ #	OP ~/~ #
OP ~/~ #				
+		+	+	+
+	- [
NEGA	•			
40 2/1 1		•	•	
		I		1
		•	•	1
		I		1
10 3/2 2		I	ı	1
ı İ				
40		ı	1	
40 2/1 1 NEGB 50 2/1 1 *NEGD 10 3/2 2	•	 	 	

```
| 00 6/5 2 | 60 6+ 2+| 70 7/6 3 |
 | NEG |
         | NOP
12 2/1 1 |
 |----+
            | 01 6 3 | 61 7+ 3+| 71 7 4 |
 |*0IM
        -----
 | ORA
           2 2 | 9A 4/3 2 | AA 4+ 2 | BA 5/4 3 |
       | 8A
 | ORB | CA
           2 2 | DA 4/3 2 | EA 4+ 2 | FA 5/4 3 |
 | ORCC
       | 1A 3/2 2 |
 l*0RD
      | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 |
           | 9A
                    | 8A
 | PSHS | 34 5+/4+ 2 |
 | PSHU | 36 5+/4+ 2 |
 |*PSHSW | 10 6 2 |
       | 38 6 2 |
 |*PSHUW | 10 6 2 |
       | 3A 6 2 |
 | PULS | 35 5+/4+ 2 |
 | PULU | 37 5+/4+ 2 |
 |*PULSW | 10 6 2 |
       | 39
 |*PULUW | 10 6 2 |
       | 3B
```

```
| ROLA
49 2/1 1
| ROLB
59 2/1 1
|*ROLD
10 3/2 2
49
|*R0LW
10 3/2 2
59<sup>.</sup>
| R0L
                   | 09 6/5 2 | 69 6+ 2+ 79 7/6 3 |
| RORA
46 2/1 1
| RORB
56 2/1 1
|*RORD
10 3/2 2
46
|*R0RW
10 3/2 2
56
| R0R
                  | 06 6/5 2 | 66 6+ 2+ | 76 7/6 3 |
| RTI
3B 6/17 1 |
15/17 |
| RTS
39 5/4 1 |
 | SBCA | 82
             2 2 | 92 4/3 2 | A2 4+ 2+ B2 5/4 3 |
 | SBCB
       | C2
             2 2 | D2
                        4/3 2 | E2 4+ 2+| F2
                                              5/2 3 |
 |*SBCD | 10 5/4 4 | 10 7/5 3 | 10 7+/6+ 3+| 10 8/6 4 |
        | 82
                 | 92
                        | A2
                                   | B2
```

 Mnem Inherent	Immed.	[)irect	1	Indexe	d Ex	tended	
				1		1		1
OP ~/~ #	OP ~/~ #	OP	~/~	+ 01	P ~/~	# OP	~/~	#
+	-	97	4/3	2 A	7 4+	2+ B7	5/4	3
 STB		D7	4/3	2 E	7 4+	2+ F7	5/4	3
 STD		DC	5/4	2 E	C 5+	2+ FC	6/5	3
 *STE		11	5/4	3 1	1 5+	3+ 11	6/5	4
<u> </u>		97		A	7	B7		1
 *STF		11	5/4	3 1	1 5+	3+ 11	6/5	4
<u> </u>		D7		E	7	F7		1
 *STQ		10	8/7	3 10	0 8+	3+ 10	9/8	4
<u> </u>		DD		EI	D	FD		1
 *STS		10	6/5	3 10	0 6+	3+ 10	7/6	4
¦		DF		E	F	FF		1
STU		DF	5/4	2 E	F 5+	2+ FF	6/5	3
 *STW		10	6/5	3 10	0 6+	3+ 10	7/6	4
¦		97		A	7	B7		
STX		9F	5/4	2 A	F 5+	2+ BF	6/5	3

```
| STY
                  | 10 6/5 3 | 10 6+ 3+ | 10 7/6 4 |
                   1 9F
                           l AF
                                     l BF
              2
                 2 | 90
                        4/3
                            2 | A0
                                      2+| B0
                                            5/4 3 I
 | SUBA
         | 80
                                   4+
 | SUBB
        | C0
              2
                 2 | D0
                       4/3
                           2 | E0
                                 4+ 2+| F0
                                            5/4
                                                3 |
 | SUBD
        | 83
             4/3
                 3 | 93
                       6/4
                           3 | A3 6+/5+ 2+| B3
                                            7/5
 |*SUBE
              3
                 3 | 11
                        5/4 3 | 11
                                   5+ 3+| 11
        | 11
                                            6/5
                                                4 |
        | 80
                 | 90
                           | A0
                                  | B0
 |*SUBF
                       5/4 3 | 11
        | 11
              3
                 3 | 11
                                 5+ 3+| 11
                                            6/5 4 |
        | C0
                   | D0
                       | E0
                                  | F0
 I*SUBW
             5/4 4 | 10
                       7/5 3 | 10 7+/6+ 3+| 10
        | 10
                                            8/6 4 |
         | 80
                   | 90
                        | A0
                                  | B0
 | SWI
3F 19/21 1
 | SWI2
10 20/22 2 |
 | SWI3
11 20/22 2 |
3F
+----|
| SYNC
13 2+/1+ 1 |
 -----+-----
+----|
 -----+----+-----
 |*TIM
                   | 0B
                        6
                           3 | 6B 7+ 3+ | 7B
 | TSTA
```

4D 2/1 1					
TSTB	1		1		
5D 2/1 1					
*TSTD	1				
10 3/2 2					
	I		l		
4D					
*TSTE				l	1
11 3/2 2					
			l	l	ı
4D					
*TSTF			l	l	1
11 3/2 2	1				
5D	I		ı	I	1
•	1		1	ı	1
*TSTW 10 3/2 2	I		I	I	1
10 3/2 2	1		1	1	1
5D	ı		ı	ı	1
TST	1	OD 6/4	2 6D 6±	/5+ 2+ 7D	7/5 3 1
	ı	00 0/4	2 00 0+	/31 27 /0	1/3 3
I					

Mnemonics Reference Table Page 24

Branch Instructions

Mnem	Immed.	1	Mnem	Immed.	1	Mnem
Immed.	I	I	1	1	1	1 1
 OP ~/~ #	OP ~/~	#	1	OP ~/~	#	1 1
	 +	+		-+	+	
BCC 2A 3 2	24 3	2	BLE	2F 3	2	BPL
	 10 5/6	4	LBLE	10 5/6	4	LBPL
1	 24	1	I	2F	1	1 1
2A BCS	 25 3	2	BLO	25 3	2	BRA
20 3 2 LBCS	 10 5/6	4	LBL0	10 5/6	4	LBRA
16 5/4 3 	 25	I	1	25		1 1

1															
21	BEQ 3 2		27	3	2		BLS	-	23	3	2			BRN	-
21	LBEQ	: 	10	5/6	4	1	LBLS	1	10	5/6	4		ı	LBRN	1
10	5/6 4	ŀĺ	27			1	1	1	22			ı	1		1
21		¦	27			ı	l	ı	23			ı	ı		ı
0D	BGE	Ì	2C	3	2		BLT		2D	3	2			BSR	-
8D 	7/6 2 LBGE	: 	10	5/6	4	I	LBLT	1	10	5/6	4		ı	LBSR	1
17	9/7 3	}	2C			1	ı	1	2D			ı	ı		1
		ı	20			ı	l	ı	Zυ			ı	I		ı
28	BGT 3 2		2E	3	2		BMI		28	3	2			BVC	
20	LBGT	·	10	5/6	4	1	LBMI	-	10	5/6	4		I	LBVC	1
10	5/6 4		2E			1	1	1	28			ı	ı		1
28		l				1	ı	ı				1	I		ı
29	BHI 3 2	,	22	3	2	1	BNE		26	3	2			BVS	
	LBHI	j	10	5/6	4	1	LBNE		10	5/6	4			LBVS	
10	5/6 4	ŀ	22			1	1	1	26			ı	ı		1
29		i				ı	I	1	20			ı	'		ı
	BHS		2F	3	2							-			
ļ	LBHS	ļ	10	5/6	4	ļ									
l			2F			- -									

Bit Transfer/Manipulation

	Mnem	Direct	Post-Byte
	 	 OP ~/~ # +	
	*BAND	11 7/6 4 30	
	*BIAND 	11 7/6 4 31	Bits 7 and 6: Register
	İ*B0R İ I I	11 7/6 4 32	
	*BIOR 	11 7/6 4 33	Bits 5, 4 and 3: Source Bit
	j j	11 7/6 4 34	Bits 2, 1 and 0: Destination
bi	t		
	*BIEOR 	11 7/6 4 35	

*LDBT	11	7/6	4	Source/De	estination	Bit in bin	ary
form:							
	36			0 - 000			
	11	8/7	4	0 - 000	2 - 010	5 - 100	6 -
110							
	37			1 - 001	3 - 011	5 - 101	7 -
111							

Both the source and destination bit portions of the post-byte are

looked at by the 6309 as the actual bit NUMBER to transfer/store. Use the

binary equivilant of the numbers (0 thru 7) and position them into the bit area of the post byte.

Mnemonics Reference Table Page 25

Logical Memory Operations

 Mnem Inherent	Immed.	I	D	irect		I	ndexe	d	Ex	tende	d
		I			1			1			1
 	OP ~/~	#	0P	~/~	#	0P	~/~	#	0P	~/~	#
+ *AIM			02	6	3	62	7+	3+	72	7	4
 *EIM			05	6	3	65	7+	3+	75	7	4
 *0IM		1	01	6	3	61	7+	3+	71	7	4
 *TIM 			0B	6	3	6B	7+	3+	7B	5	4

Inter-Register Instructions and

Transfer/Exchange

Inter-Register Post

Byte	_							
Mnem 	Forms		Re	giste	r		I	
		ı	0P	~/~	+	1		
		' -+		,	· 	' . I	SOURCE	
DESTINATION						ı	Source	
*ADCR 	R0,R1		10	4	3			
NIEDLE			31				HI NIBBLE LOW	
NIBBLE *ADDR	R0,R1		10 30	4	3			
*ANDR	R0,R1		10 34	4	3		Register Field (source or	k
destination)		'	٥.			1	(304) 66 01	
*CMPR 	R0,R1		10 37	4	3		0000 - D (A:B) 100	0
- A *E0RR	R0,R1	ı	10	4	3	1	0001 - X 100) 1
- B		' 	36	•	_	' 	0010 - Y 101	
- CCR		'				1		- 0
EXG - DPR	R0,R1		1E	8/5	2		0011 - U 101	1
*0RR - 0	R0,R1		10	4	3		0100 - S 116)0
			35				0101 - PC 116)1
*SBCR	R0,R1	١	10	4	3		0110 - W 111	L 0
- E		I	33			1	0111 - V 111	L1
- F *SUBR	R0,R1	ı	10	4	3	1		
j		į	32			ļ	1. C 11	
TFR Inter-Regist	R0,R1 -er	ı	1F	6/4	2	1	The results of all	
*TFM	R0+,R1+		11	6+3n	3		operations are passsed	
into R1 with	า 	ı	38			ı	the exception of EXG which	:h
exchanges	 DO D1	į		6.25	2		·	
*TFM and the TFR	R0-,R1-	ı	11	6+3n	3	ı	the values of registers	
 *TFM	R0+,R1		39 11	6+3n	2		block transfers.	
	NOT, NI		3A	0+311	5		The register field codes	
%1100 and	L DO D1 :	ı	11	6.2-	~	ı	0.1101 and bath	
*TFM registers.	R0,R1+ They	1	11	6+3n	3	I	%1101 are both zero	
 destination.			3B				can be used as source or	

Mnemonics Reference Table Page 26

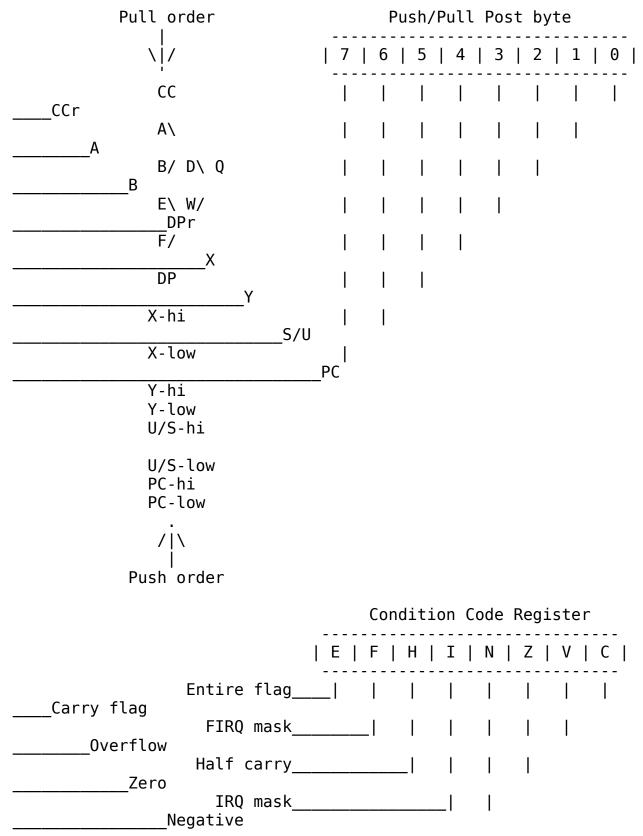
Indexed Address Modes and Post byte Information

 		Non-Indirect Modes									
	 -+	Forms	 -+	Assembler form		PostByte OP code					
+	 	<pre>5 bit offset 8 bit offset 16 bit offset</pre>	 	n,R n,R n,R	· 	1rr00100 0rrnnnn 1rr01000 1rr01001					
		A - Register B - Register E - Register F - Register D - Register W - Register	1 1 1 1 1	B,R E,R F,R D,R W,R		1rr00110 1rr00101 1rr01010 1rr01011 1rr01110					
+ Auto increment and 2/1 0 decrement of R 3/2 0	I		I	, R+	I	1rr00000 1rr00001					

```
| 2/1 | 0 |
             | Decrement 2 | ,--R | 1rr00011
| 3/2 | 0 |
|-----
+----|
| Constant offset from PC | 8 bit offset | n,PC | 1xx01100
| 1 | 1 |
| (Twos complement offset)| 16 bit offset | n,PC | 1xx01101
|----
+----|
| 0 | 0 |
|*(Twos complement offset)| 16 bit offset | n,W | 10101111
| 5/2 | 2 |
|* AutoIncrement W | Increment 2 | ,W++ | 11001111
| 3/1 | 0 |
|* AutoDecrement W | Decrement 2 | ,--W | 11101111
| 3/1 | 0 |
```

```
Indirect Modes
|-----
             | Forms | Assembler | Post--
     Type
byte | + | + |
                         form | OP code
| ~ | # |
|-----
+-----
| Constant offset from R | No offset | [ ,R] | 1rr10100
| 3 | 0 |
           | 5 bit offset | [n,R] | Defaults
to 8 bit |
           | 8 bit offset | [n,R] | 1rr11000
| 4 | 1 |
            | 16 bit offset | [n,R] | 1rr11001
| 7 | 2 |
|-----
| 4 | 0 |
```

```
| from R (Twos complement | B - Register | [B,R] | 1rr10101
| 4 | 0 |
            | E - Register | [E,R] | 1rr10111
|*offset)
| 1 | 0 |
|*
            | F - Register | [F,R] | 1rr11010
| 1 | 0 |
             | D - Register | [D,R] | 1rr11011
| 4 | 0 |
|*
             | W - Register | [W,R] | 1rr11110
| 4 | 0 |
|-----
| 6 | 0 |
decrement of R | Decrement 2 | [,--R] | 1rr10011
| 6 | 0 |
|-----
+-----
| Constant offset from PC | 8 bit offset | [n,PC] | 1xx11100
| (Twos complement offset)| 16 bit offset | [n,PC] | 1xx11101
| 8 | 2 |
+-----
| 5 | 2 |
| 0 | 0 |
|*(Twos complement offset)| 16 bit offset | [n,W] | 10110000
| 5 | 2 |
|* AutoIncrement W | Increment 2 | [,W++] |
                               11010000
| 3 | 0 |
|* AutoDecrement W | Decrement 2 | [,--W] | 11110000
| 3 | 0 |
```


rr = X, Y, U or S X = 00 Y = 01 xx = Doesn't care U = 10 S = 11

Register Descriptions

```
| X - 16 bit index register
 | Y - 16 bit index register
  | U - 16 bit user-stack pointer
 | S - 16 bit system-stack pointer
  | PC - 16 bit program counter register
  |*V - 16 bit variable register (inter-register instructions
only)
  |*0 - 8/16 bit zero register (inter-register instructions
only)
  | A - 8 bit accumulator
  | B - 8 bit accumulator
                                | Accumulator structure
map:
 |*E - 8 bit accumulator
 |*F - 8 bit accumulator
                            | D - 16 bit concatenated reg.(A B) |
 |*W - 16 bit concatenated reg.(E F) | D |
                                                         W
  |*Q - 32 bit concatenated reg.(D W) |
                                                   Q
  |*MD - 8 bit mode/error register
 | CC - 8 bit condition code register | bit 31
                                              24
                                                   15
                                                         8
  | DP - 8 bit direct page register |
```

^{*} Indicates new registers in 6309 CPU.

Push/Pull Order of Stack

The PSH(s,u) and PUL(s,u) instructions require one additional cycle for each byte pushed or pulled.

Alan DeKok's addition to the above...

The new features of the 6309 are closely related to the changes in design from the 6809. The 6309 is micro-coded, which allowed the designers to easily add new instrctions and registers. It also has a one byte pre-fetch 'cache', which enables the 6309 to execute instructions like 'lsld' (2-bytes) in one clock cycle. The design of the 6809 series allows them to read one byte per clock cycle MAXIMUM, but there is a catch. Most instructions take more clock cycles to execute than bytes they contain. While the 6309 is performing internal calculations, the 'cache' hardware goes and reads the next instruction byte, leaving only one additional byte to be read to execute the 'lsld'. Reading this byte requires one clock cycle, and then the instruction is executed while the CPU fetches the next instruction.

The 6309 has a true 16-bit internal design.

e.g. the EXG instruction operates as 6809: read op-code

```
read inter-register byte (r0,r1)
  r0_high -> temp_high
  r0_low -> temp_low
  r1_high -> r0_high
  r1_low -> r0_low
  r0_high -> r1_high
  r0_low -> r1_low

tions -> clock evalue
```

8 actions, 8 clock cycles.

6809: read op-code

```
read inter-register byte (r0,r1)
  r0 -> temp
  r1 -> r0
  r0 -> r1
```

5 actions, 5 clock cycles.

The 6309 native mode instruction execution clock lengths can be mostly accounted

for by accounting for the pre-fetch cache and the internal 16-bit ALU.

TFM has some caveats. TFM r1-,r2- should NOT be used to setup the stack, as it's a POST-decrement instruction, not PRE-decrement.

Watch out for TFM r1, r2+ if you're reading from a peripherial.

Why? The TFM uses the 1-byte 'cache' as an internal buffer for the byte that it's currently moving. The TFM instruction is interruptible (the only instruction that is), and code execution during the interrupt will destroy the byte in the cache.

On returning from the interrupt, the TFM will read the FROM address again to get the lost byte, which may be the wrong one. The visible effect of this is that block moves sometimes have a byte missing from the middle, and everything after that byte shifted down one address.

There are a few ways of checking of you're running on a 6309 or a 6809,

these include:

: tfr 0,d → illegal registers are '\$FFFF' on a 6809, \$0000 on a 6309 tstb → beq

Is6309:

: ldb #\$ff clrd \rightarrow executes as a \$10 (ignored) \$4F (clra) on a 6809 tstb beq Is6309 :

It's a bit harder to check if the system is running in native mode or not.

Most of the time it won't be necessary, but the only realy method is to do: : pshs cc,d,dp,x,y,u SAVE ALL REGISTERS AS CHECKING WILL TRASH THEM leax Is6309,pc pshs x save address of 6309 flag code leax Is6809,pc pshs x save address of 6809 flag code pshs cc,d,dp,x,y,u save registers orcc #ENTIRE set to ALL registers on-stack rti go to 6309/6809 code

Is6309 clr <Flag it's a 6309 bra Continue

Is6809 leas 2,s account for 6309 PC

lda #\$FF
sta <Flag</pre>

Continue puls cc,d,dp,x,y,u restore all registers [etc...]:

Note that the checks for both 6809/6309 and native/emulation will execute

perfectly on both 6809 and 6309 systems, and will give the correct results in all cases.

In order to check for 6309 FIRQ operation (i.e. all registers saved),

you'd have to do something like

[enable FIRQ's] : leau -3,s where stack will be if only CC and PC are saved stu <test remember the pointer loop tst <check FIRQ happened yet?

bne loop no, wait for an FIRQ

[...]

FIRQ cmps <test only CC, PC saved? bne Is6309F no, it's 6309 FIRQ mode clr <F.Flag set to 6809 IRQ mode bra continue

Is6309F Ida #\$FF don't bother saving A as 6309 FIRQ mode already saves it sta <F.Flag set the FIRQ flag

continue clr <check we've done an FIRQ, so we can exit rti :

The W,E, and F registers do not have the full immediate addressing mode capabilities that D,A, and B do. SBC, AND, BIT, EOR, ADC, OR with E,F,W are available only in register-register mode. LSR, ROR, ROL are available for W but not for E,F. ASR, ASL, LSL, NEG do not exist at all for W,E,F.

ASL can sort of be implemented by doing a ADDR R1,R1. (see later) You can also do things like 'leax u,x' by doing a ADDR u,x.

Sadly, many of the new 6309 instructions are useless in everyday life. The bit manipulation instructions are interesting, but slow and mostly of limited value. Same with much of the DIV/MUL higher math. The AIM, etc. are very useful, though.

Programmer recommendations

Try to stay away from using the W register. It's got another prebyte

(like instructions using 'Y' or 'S'), and is correspondingly larger and slower. E and F are best used mainly instead of pushing loop counters onto the stack when you're running out of registers.

The V register is mostly pointless. If you're doing context switches, it isn't saved across interrupts unless you do so manually. Shuffling data back and forth between other registers and V is a lot of trouble. Any math, etc. involving V is generally done much faster using a real register. After going through 1meg+ of 6309 assembly code which is everything from an OS kernel to serial drivers to graphics drivers, I've never seen a use for the V register.

Of course, you could put '\$FFFF' into V, and have registers for reg-reg addressing modes with bits all zero (0), and another with bits all 1 (V).

Pseudo-nops: tfr 0,0; exg 0,0

Extremely small software timing loops with large delays may be generated

by performing a 'LDW', and then 'TFM r0, r0+'.

Many programs can be executed in 6309 native mode by patching only the IRQ code, if it accesses the stack. A 'LDMD #\$01' may be performed as soon as your program starts executing, and will see an immediate 10-15% speed increase. Software timing loops must be checked!

Opcodes Hitachi left out of the 6309: and some round-about equivalents E/F/W

ADCr: ADCR 0,r ANDr: ; ANDR V,r ASLr/LSLr: ADDR r,r ASRr BITr EORr NEGr:

COMr INCr ORr SBCr: SBCR Z,r

E/F — LSRr ROLr: ADCR r,r RORr

Q (Long word =W1:W0)

ADDQ: ADDW W0; ADCD W1 SUBQ: SUBW W0; SBCD W1 ASLQ: ASLW; ROLD ROLQ: ROLW; ROLD LSRQ: LSRD; RORW RORQ: RORD; RORW ASRQ: ASRD; RORW COMQ: COMD; COMW NEGQ: COMD; COMW; SBCR 0,D